Αυτή η σελίδα από το BGA wiki εμφανίζεται στα Αγγλικά επειδή δεν υπάρχει ακόμη περιεχόμενο στη γλώσσα σας. Μη διστάσετε να το μεταφρασετε εσεις!
For the rules of piraten kapern, see GameHelpPiratenKapern
Probabilities
Binomial formula
n! × pᵏ(1 − p)ⁿ⁻ᵏ k!(n-k)!
n: number of trails (dice thrown) k: number of successes (dice with a face value)p: probability of success (of a die face value)
Example
Probability of throwing 3 with 5 dice:
5! × (⅙)³ × (1 − ⅙)⁵⁻³ 3!(5-3)!
= 5×4×3×2×1 × (⅙)³ × (⅚)² 3×2×1 × 2×1
= 10 × (⅙)³ × (⅚)²≈ 0.0321 or 3.21%
2 dice
| In words | In maths | Percentage |
|---|---|---|
| Probability of no skulls | P(X = 0) = (⅚)² | ≈ 69.4% |
| Probability of one skull | P(X = 1) = 2 × (⅙) × (⅚) | ≈ 27.8% |
| Probability of two skulls | P(X = 2) = (⅙)² | ≈ 2.78% |
8 dice
| In words | In maths | Percentage |
|---|---|---|
| Probability of no skulls | P(X = 0) = (⅚)⁸ | ≈ 23.3% |
| Probability of one skull | P(X = 1) = 8 × (⅙) × (⅚)⁷ | ≈ 37.2% |
| Probability of two skulls | P(X = 2) = 28 × (⅙)² × (⅚)⁶ | ≈ 26.0% |
| Probability of three skulls | P(X = 3) = 56 × (⅙)³ × (⅚)⁵ | ≈ 10.4% |
| Probability of four skulls | P(X = 4) = 70 × (⅙)⁴ × (⅚)⁴ | ≈ 2.60% |
| In words | In maths | Percentage |
|---|---|---|
| Probability of one or more skulls | P(X ≥ 1)
= 1 − P(X = 0) = 1 − (⅚)⁸ |
≈ 76.7% |
| Probability of two or more skulls | P(X ≥ 2)
= 1 − [ P(X = 0) + P(X = 1) ] = 1 − [ (⅚)⁸ + 8 × (⅙) × (⅚)⁷ ] |
≈ 39.5% |
| Probability of three or more skulls | P(X ≥ 3)
= 1 − [ P(X = 0) + P(X = 1) + P(X = 2) ] = 1 − [ (⅚)⁸ + 8 × (⅙) × (⅚)⁷ + 28 × (⅙)² × (⅚)⁶ ] |
≈ 13.5% |
| Probability of four or more skulls | P(X ≥ 4)
= 1 − [ P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) ] = 1 − [ (⅚)⁸ + 8 × (⅙) × (⅚)⁷ + 28 × (⅙)² × (⅚)⁶ + 56 × (⅙)³ × (⅚)⁵ ] |
≈ 3.07% |
Αυτή η σελίδα προέρχεται από το BGA wiki, και έχει γραφτεί από την κοινότητα της BGA. Μη διστάσετε να την επεξεργαστείτε!

